Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Biomedical and Environmental Sciences ; (12): 406-417, 2023.
Article in English | WPRIM | ID: wpr-981069

ABSTRACT

OBJECTIVE@#To explore the genotyping characteristics of human fecal Escherichia coli( E. coli) and the relationships between antibiotic resistance genes (ARGs) and multidrug resistance (MDR) of E. coli in Miyun District, Beijing, an area with high incidence of infectious diarrheal cases but no related data.@*METHODS@#Over a period of 3 years, 94 E. coli strains were isolated from fecal samples collected from Miyun District Hospital, a surveillance hospital of the National Pathogen Identification Network. The antibiotic susceptibility of the isolates was determined by the broth microdilution method. ARGs, multilocus sequence typing (MLST), and polymorphism trees were analyzed using whole-genome sequencing data (WGS).@*RESULTS@#This study revealed that 68.09% of the isolates had MDR, prevalent and distributed in different clades, with a relatively high rate and low pathogenicity. There was no difference in MDR between the diarrheal (49/70) and healthy groups (15/24).@*CONCLUSION@#We developed a random forest (RF) prediction model of TEM.1 + baeR + mphA + mphB + QnrS1 + AAC.3-IId to identify MDR status, highlighting its potential for early resistance identification. The causes of MDR are likely mobile units transmitting the ARGs. In the future, we will continue to strengthen the monitoring of ARGs and MDR, and increase the number of strains to further verify the accuracy of the MDR markers.


Subject(s)
Humans , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Multilocus Sequence Typing , Genotype , Beijing , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Diarrhea , Microbial Sensitivity Tests
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 166-174, 2022.
Article in Chinese | WPRIM | ID: wpr-940600

ABSTRACT

ObjectiveTo study the effects of different plant growth-promoting rhizobacteria (PGPR) on the growth of Paris polyphylla var. yunnanensis seedlings and the quality of its medicinal parts, in order to provide reference for the cultivation of high-quality P. polyphylla var. yunnanensis. MethodThe pot culture experiment at room temperature and the single-factor completely random design were employed for exploring the effects of five PGPR on physiological characteristics and inorganic elements of P. polyphylla var. yunnanensis. ResultThe results showed that the exogenous inoculation of different PGPR promoted the growth and development of P. polyphylla var. yunnanensis to varying degrees, delayed the senescence of leaves, and improved the medicinal value of new and old rhizomes. Compared with the non-inoculated control, the exogenous inoculation of compound microbial fertilizer (FH) and microbial agent Sanju Guanjin liquid (SJ) enhanced the root vigor, increased the content of photosynthetic pigments and the activities of anti-oxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)], and reduced the content of malondialdehyde (MDA) in leaves. Their inhibition rates against MDA were 10.46%-39.62% and 20.99%-53.12%, respectively. With the growth of P. polyphylla var. yunnanensis, the inhibition rate against MDA gradually increased, which effectively delayed the senescence of P. polyphylla var. yunnanensis leaves. In addition, the exogenous inoculation of different PGPR promoted the accumulation of nutrient elements in new and old rhizomes, lowered the heavy metal content to varying degrees, and improved the medicinal value of P. polyphylla var. yunnanensis rhizomes. ConclusionFH and SJ have exhibited the best promoting effect on the growth of P. polyphylla var. yunnanensis seedlings and also the best regulatory effect on the medicinal value of P. polyphylla var. yunnanensis rhizomes, which has provided reference for the application and promotion of PGPR in the growth of P. polyphylla var. yunnanensis.

SELECTION OF CITATIONS
SEARCH DETAIL